

The book was found

Tutorials In Introductory Physics And Homework Package

Synopsis

This landmark book presents a series of physics tutorials designed by a leading physics education research group. Emphasizing the development of concepts and scientific reasoning skills, the tutorials focus on common conceptual and reasoning difficulties. The tutorials cover a range of topics in Mechanics, E & M, and Waves & Optics.

Book Information

Paperback: 445 pages

Publisher: Pearson; 1 edition (August 30, 2001)

Language: English

ISBN-10: 0130970697

ISBN-13: 978-0130970695

Product Dimensions: 8.2 x 0.9 x 10.7 inches

Shipping Weight: 1.8 pounds (View shipping rates and policies)

Average Customer Review: 3.4 out of 5 stars 35 customer reviews

Best Sellers Rank: #19,814 in Books (See Top 100 in Books) #25 in Books > Science & Math > Science for Kids #81 in Books > Textbooks > Science & Mathematics > Physics #228 in Books > Science & Math > Physics

Customer Reviews

Tutorials in Introductory Physics is based on extensive teaching experience and more than twenty years of research in which the Physics Education Group has sought to identify and address common difficulties that students encounter in studying physics. Development of the tutorials was motivated by the conviction that in order to develop a functional understanding of the material students need more assistance than they can obtain through listening to lectures, reading the textbook, and solving standard quantitative problems. Tutorials in Introductory Physics is intended to supplement these traditional forms of instruction by providing a structure that promotes the active mental engagement of students in the process of learning physics. The materials are equally appropriate for algebra-based and calculus-based courses. Working together in small collaborative groups, students help one another go through the steps in reasoning necessary for the construction and application of important concepts and principles. The tutorials have been rigorously class-tested at the University of Washington, at other research universities, and at two-year and four-year colleges. This First Edition of Tutorials in Introductory Physics builds upon the Preliminary Edition. In addition to new and revised tutorials on mechanics, electricity and magnetism, and waves and

optics, the First Edition also includes tutorials on selected topics from hydrostatics, thermodynamics, and modern physics. In all cases, a complete tutorial sequence consists of a pretest, worksheet, homework assignment, and examination questions that serve as post-tests. The student texts consist of the tutorial worksheets and homework assignments. Pretests are included in the Instructors Guides: For these instructional materials to be most effective, it is important that course examinations include qualitative questions that emphasize the concepts and reasoning skills developed in the tutorials.

Tutorials in Introductory Physics is a set of instructional materials intended to supplement the lectures and textbook of a standard introductory physics course. The emphasis in the tutorials is on the development of important physical concepts and scientific reasoning skills, not on solving the standard quantitative problems found in traditional textbooks. There is increasing evidence that after instruction in a typical course, many students are unable to apply the physics formalism that they have studied to situations that they have not expressly memorized. In order for meaningful learning to occur, students need more assistance than they can obtain through listening to lectures, reading the textbook, and solving standard quantitative problems. It can be difficult for students who are studying physics for the first time to recognize what they do and do not understand and to learn to ask themselves the types of questions necessary to come to a functional understanding of the material. Tutorials in Introductory Physics provides a structure that promotes the active mental engagement of students in the process of learning physics. Questions in the tutorials guide students through the reasoning necessary to construct concepts and to apply them in real-world situations. The tutorials also provide practice in interpreting various representations (e.g., verbal descriptions, diagrams, graphs, and formulas) and in translating back and forth between them. For the most part, the tutorials are intended to be used after concepts have been introduced in the lectures and the laboratory, although most can serve to introduce the topic as well. The tutorials comprise an integrated system of pretests, worksheets, homework assignments, and post-tests. The tutorial sequence begins with a pretest. These are usually on material already presented in lecture or textbook but not yet covered in tutorial. The pretests help students identify what they do and not understand about the material and what they are expected to learn in the upcoming tutorial. They also inform the instructors about the level of student understanding. The worksheets, which consist of carefully sequenced tasks and questions, provide the structure for the tutorial sessions. Students work together in small groups, constructing answers for themselves through discussions with one another and with the tutorial instructors. The tutorial instructors do not lecture but ask questions

designed to help students find their own answers. The tutorial homework reinforces and extends what is covered in the worksheets. For the tutorials to be most effective, it is important that course examinations include questions that emphasize the concepts and reasoning skills developed in the tutorials. The tutorials are primarily designed for a small class setting but have proved to be adaptable to other instructional environments. The curriculum has been shown to be effective for students in regular and honors sections of calculus-based and algebra-based physics. The tutorials have been developed through an iterative cycle of: research on the learning and teaching of physics, design of curriculum based on this research, and assessment through rigorous pretesting and post-testing in the classroom. Tutorials in Introductory Physics has been developed and tested at the University of Washington and pilot-tested at other colleges and universities. Comments on the First Edition Ongoing research has led to modifications to the tutorials and associated homework in the Preliminary Edition of Tutorials in Introductory Physics. The First Edition incorporates these changes and also includes several new tutorials on topics covered in the Preliminary Edition. In addition, the First Edition contains a new section with tutorials on topics in hydrostatics, thermal physics, and modern physics.

Hated it. 10/10 Haters will say it's not hardcover.

perfect price for a text book

This was not the homework package :/ It's for classroom but not HW.

Tutorials in Introductory Physics are a set of worksheets designed to lead students through complex concepts by questioning common misconceptions, and leading them to the correct understanding of the topic. There is little math and calculation, instead the worksheets reinforce the concepts and help students truly understand physics. These work best when students are engaged and cooperative, such as in college tutorial sections and highschool honors sections. The students should work in groups to finish the tutorial, and then complete the related homework sections on their own. I used the worksheets when I was a biology undergraduate in the courses of Physics I and II. I later decided to become a physics major, and ultimately became a physics teacher. My more sophisticated highschool classes were able to complete many of the worksheets, though some were too time consuming or challenging for me to assign. I adopted many sections to make them appropriate by creating shortened worksheets to be completed in the first or last 10 minutes of

class. The examples were useful for me in presenting to the class. The books are built to be used once. The pages are perforated for the homework, and bound for the tutorial. It would not be in copyright to photocopy and distribute.

Pages do not rip out easily.

This book is required for my physics class in college and it has been a very useful book. It makes sure you really understand the material and it asks a wide range of questions that really help you learn.

It's what I needed for my classes and it'll (I think) be used throughout all my the physics classes I'll be taking. A nice money saver.

Had large portions written in but other than that the book was worth it's price.

[Download to continue reading...](#)

Tutorials In Introductory Physics and Homework Package Guitar Journal and Homework Book (Blue): TAB paper, Staff Paper, Manuscript Paper, Theory Tools, Practice Planner, Notebook Paper, Chord Charts, Goal ... Guitar Journal and Homework Book) (Volume 5) Homework Planners For Students: Undated Daily/Weekly Assignment/Homework Planner Journal Notebook. 8.5In By 11In. 104 Pages. For Students, Men Women, Boys, & Girls (Student Planners) Homework Planner Middle School: Homework Planner Homework Helpers: Chemistry (Homework Helpers (Career Press)) Step-By-Step Data Analysis Homework Booklet, Intermediate (Homework Booklets) Mathematics, A Step-By-Step Approach Homework Booklet, Grade 7 (Homework Booklets) Mathematics, A Step-By-Step Approach Homework Booklet, Grade 6 (Homework Booklets) Mathematics, A Step-By-Step Approach Homework Booklet, Grade 8 (Homework Booklets) Autodesk Maya 138 Tutorials and Tips by Antonio Bosi: 138 useful Maya tutorials (tips & tricks) for experts and beginners Lecture-Tutorials for Introductory Astronomy, 3rd Edition Lecture Tutorials in Introductory Geoscience Physics for Scientists and Engineers, Hybrid (with Enhanced WebAssign Homework and eBook LOE Printed Access Card for Multi Term Math and Science) Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus MasteringPhysics with Pearson eText -- Access Card Package (4th Edition) University Physics with Modern Physics Plus MasteringPhysics with eText -- Access Card Package (14th Edition) Basic Fluid Mechanics (Stick Figure Physics Tutorials) Electric Circuits (Stick Figure Physics Tutorials) Introductory DC/AC

Electronics And Introductory DC/AC Circuits: Laboratory Manual, 6th Edition The Solid State: An Introduction to the Physics of Crystals for Students of Physics, Materials Science, and Engineering (Oxford Physics Series) Head First Physics: A learner's companion to mechanics and practical physics (AP Physics B - Advanced Placement)

[Contact Us](#)

[DMCA](#)

[Privacy](#)

[FAQ & Help](#)